
Performance Analysis of Hash Algorithms and File
Integrity

Hanumantu Rajeswari #1, Ramesh Yegireddi #2, Vudumula Govinda Rao#3

12 Department of CSE
1Aditya Institute of Technology and Management Tekkali - 532201,

Andhra Pradesh, India

3 Department of CSE

Swami Vivekananda Engineering College, Bobbili,
Andhra Pradesh, India

Abstract— This paper is concerned with giving both an
overview of the performance analysis of hash functions in
cryptography and a presentation of file integrity in mobile
phones.
Cryptographic hash functions are a very useful tool in
cryptography. They are applied in many areas like integrity of
messages, storage of passwords securely and protect
signatures. The three hash algorithms SHA-1, SHA-512 and
MD5 are considered to analyze their performance.
Hash functions are widely used to verify file integrity. And, it
is clear that the message digest is used to verify the integrity of
the document. Indeed, it certifies that the document has not
been modified somewhere between the moment it was sent
and the moment it was received.
We analysed the performance of three algorithms on 32 bit
processor and identified the SHA-1 has best performance; the
same algorithm is used in file integrity.

Keywords— message digest, hash value, SHA, integrity,
cryptography, performance.

I. INTRODUCTION

A hashing algorithm is a deterministic function that
takes in an arbitrary length block of data, and returns a
fixed-size string, which is called the message digest
value.[1] The digest is sometimes also called the "hash" or
"fingerprint" of the input.

A hash function H is a transformation that takes a
variable-size input “m‟ and returns a fixed-size string,
which is called the hash value h (that is, h = H(m)).[2] Hash
functions with just this property have a variety of general
computational uses, but when employed in cryptography
the hash functions are usually chosen to have some
additional properties.

The basic requirements for a cryptographic hash
function are:

o The input can be of any length,
o The output has a fixed length,
o H(x) is relatively easy to compute for any

given x ,
o H(x) is one-way,
o H(x) is collision-free.

A hash function H is said to be one-way if it is hard to
invert, where "hard to invert" means that given a hash value
h, it is computationally infeasible to find some input x such
that H(x) = h.

If, given a message x, it is computationally infeasible to
find a message y not equal to x such that H(x) = H(y) then
H is said to be a weakly collision-free hash function.

A strongly collision-free hash function H is one for
which it is computationally infeasible to find any two
messages x and y such that H(x) = H(y).

II. COMMON USES OF CRYPTOGRAPHIC HASHES

A. Integrity Verification
The sender can hash a file and appended that message
digest before sending to the recipient. The recipient will
then hash the file received and check the hashes match,
to ensure files have not been corrupted or modified.

B. Digital signature protection
A hash is generated, signed with private key of sender
and transmitted with its message, allowing the recipient
to hash the message and decrypt the digest using
sender’s public key to compare outputs. By signing the
hash before sending, the sender can prove that the
message has not been tampered with.

C. Passwords Protection
Rather than storing a user’s password, a system will
typically store the hash of the password instead. When a
user enters their password, the hash is then computed
and compared with the stored hash. If the hash matches,
due to the collision resistance property of hashing
algorithms, it implies that the passwords match.

III. STRUCTURE OF HASH ALGORITHMS

A. SHA-1 algorithm
The SHA-1 algorithm [3] accepts as input a message

with a maximum length of 264 - 1 and produces a 160-bit
message digest as output. The message is processed by the
compression function in 512-bit block. Each block is
divided further into sixteen 32-bit words denoted by Mt for
t = 0, 1. . . 15. The compression function consists of four
rounds; each round is made up of a sequence of twenty
steps. A complete SHA-1 round consists of eighty steps
where a block length of 512 bits is used together with a
160-bit chaining variable to finally produce a 160-bit hash

Hanumantu Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7376-7379

www.ijcsit.com 7376

value. The processing works as described in the following
steps:
Step 1: Append padding bits

The original message is padded so that its length is
congruent to 448modulo512. Again, padding is
always added although the message already has
the desired length. Padding consists of a single 1
followed by the necessary number of 0 bits.

Step 2: Append length
A 64-bit block treated as an unsigned 64-bit
integer (most significant byte first), and
representing the length of the original message
(before padding in step 1), is appended to the
message. The entire message's length is now a
multiple of 512.

Step 3: Initialize the buffer
The buffer consists of five (5) registers of 32 bits
each denoted by A, B, C, D, and E.
This 160-bit buffer is used to hold temporary and
final results of the compression function. These
five registers are initialized to the following 32-bit
integers (in hexadecimal notation).
A = 67 45 23 01
B = ef cd ab 89
C = 98 ba dc fe
D = 10 32 54 76
E = c3 d2 e1 f0

Step 4: Process message in 512-bit blocks
o Divide Mi into 16 32-bit words: W0, W1, W2,

. . . , W15.
o for t = 16 to 79 compute

o Wt = (Wt−3 Wt−8 Wt−14 Wt−16)
<<< 1.

o Set (A0, B0, C0, D0, E0)  hi−1.
o For t = 0 to 79 do

o T = At <<< 5 + ft(Bt , Ct ,Dt) + Et
+Wt + Kt

o Et+1 = Dt , Dt+1 = Ct , Ct+1 = Bt
<<< 30, Bt+1 = At , At+1 = T.

Step 5: Output
After processing the last 512-bit message block,
we obtain a 160-bit message digest.

o Output A = A0 + A80, B = B0 + B80, C = C0

+ C80, D = D0 + D80, and E = E0 + E80
(modulo 232).

o The function ft and the values Kt used above
are:
o 0 ≤ t ≤ 19: ft (X, Y , Z) = XY (￢X)Z

 Kt = 5A827999

o 20 ≤ t ≤ 39: ft (X, Y , Z) = X Y Z
 Kt = 6ED9EBA1

o 40 ≤ t ≤ 59: ft (X, Y , Z) = XY XZ
YZ Kt = 8F1BBCDC

o 60 ≤ t ≤ 79: ft (X, Y , Z) = X Y Z
 Kt = CA62C1D6

Fig. 1 SHA – 1 processing

B. MD5 Algorithm

Ronald Rivest’s MD5 function is a cryptographic
algorithm that takes an input of arbitrary length and
produces a message digest that is 128 bits long. MD5 is
used in many situations where a potentially long message
needs to be processed and/or compared quickly. The most
common application is the creation and verification of
digital signatures.

The MD5 algorithm first divides the input in blocks of
512 bits each. 64 Bits are inserted at the end of the last
block. These 64 bits are used to record the length of the
original input. If the last block is less than 512 bits, some
extra bits are 'padded' to the end. Next, each block is
divided into 16 words of 32 bits each. These are denoted as
M0 ... M15.
1). The buffer

MD5 uses a buffer that is made up of four words
that are each 32 bits long. These words are called A, B, C
and D. The initial value is:

A = 67452301
B = EFCDAB89
C = 98BADCFE
D = 10325476

2). The table

MD5 further uses a table K that has 64 elements.
Element number i is indicated as Ki. The table is computed
beforehand to speed up the computations. The elements are
computed using the mathematical sin function:

Ki = | sin(i + 1)| * 232

3). Four auxiliary functions

In addition MD5 uses four auxiliary functions that
each take as input three 32-bit words and produce as output
one 32-bit word. They apply the logical operators and, or,
not and xor to the input bits.
F(X,Y,Z) = (X Y) or ((￢X) Z)
G(X,Y,Z) = (X Z) or (Y (￢Z))

H(X,Y,Z) = X Y Z

I(X,Y,Z) = Y (X (￢Z))

Hanumantu Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7376-7379

www.ijcsit.com 7377

4). Processing the blocks
The contents of the four buffers (A, B, C and D)

are now mixed with the words of the input, using the four
auxiliary functions (F, G, H and I). There are four rounds,
each involves 16 basic operations. One operation is
illustrated in the figure below.

Fig. 2 MD 5 Processing

The figure shows how the auxiliary function F is

applied to the four buffers (A, B, C and D), using message
word Mi and constant Ki. The item "<<<s" denotes a
binary left shift by s bits.
5). The output

After all rounds have been performed, the buffers
A, B, C and D contain the MD5 digest of the original input.

C. SHA – 512 Algorithm

For SHA-512 algorithm [5], each message block has
1024 bits, which are represented as a sequence of sixteen
64-bit words.

1). SHA-512 Constants

SHA-512 use sequence of eighty constant 64-bit
words, K0

{512}, K1
{512} , , K79

{512}. These words
represent the first sixty- four bits of the fractional parts of
the cube roots of the first eighty prime numbers. In hex,
these constant words are (from left to right)

428a2f98d728ae22 7137449123ef65cd
b5c0fbcfec4d3b2f e9b5dba58189dbbc
3956c25bf348b538 59f111f1b605d019
923f82a4af194f9b ab1c5ed5da6d8118
d807aa98a3030242 12835b0145706fbe
243185be4ee4b28c 550c7dc3d5ffb4e2
72be5d74f27b896f 80deb1fe3b1696b1
(Sample data)

2). Padding

Suppose the length of the message M, in bits, is ll
bits. Append the bit “1” to the end of the message, followed
by k zero bits, where k is the smallest non-negative solution
to the equation l ��1 ��k ≡�896mod1024.

SHA-512 use six logical functions. Each function
operates on 64-bit words and is represented as x, y, and z.
The result of each function is a new 64-bit word.

 Ch(x, y, z) = (x Ʌ�y) �(x Ʌ�z)

 Maj(x, y, z) = (x Ʌ�y) �(x Ʌ�z) �(y Ʌ�z)

IV. PERFORMANCE COMPARISON

The comparison of three hash algorithms is shown in
the table 1. The output hash values of the three algorithms
also show in the table 2. The performance of these
algorithms verified on 32-bit processor, the SHA – 1 has
better performance as shown in table 3.

Name
Block
Size

(Bits)

Word
Size

(Bits)

Output
Size

(Bits)
Rounds

Length
Field
(Bits)

MD 5 512 32 128 64 64

SHA – 1 512 32 160 80 64

SHA – 512 512 32 512 80 128

Table 1 : Comparison of Three Algorithms

Name Input String
Hash Value
(Message Digest)

Size of
the MD

MD 5
Aditya Institute of
Technology and
Management

e871b93a38d8a52
8bfd5d421aebfdca
s

128

SHA –1
Aditya Institute of
Technology and
Management

0ed1022d39b7471
dd91d61f713d1b5
4e15115175

160

SHA–512
Aditya Institute of
Technology and
Management

0df1451djf14512d
dbbf1171ddiba012
457dfeib115432ee
dfa2173ffdeb112f2
idb1115412

512

Table 2 : Hash Value of Three Algorithms

Algorithm Performance (ms)
MD5 11.027356465389207

SHA – 1 10.275190830230713
SHA - 512 18.339390993118286

Table 3 : Performance of Three Algorithms

Fig. 3 Analysis of Hash Algorithms

Hanumantu Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7376-7379

www.ijcsit.com 7378

V. FILE INTEGRITY

 There are some possibilities to enhance the integrity of
files in Android Mobile. We propose two possibilities in
this regard which require a lot of work to be done on these
two alternatives. According to our proposal, (1) to enhance
file integrity, we need SHA -1 algorithm. When the mobile
is equipped with SHA - 1 algorithm, any modified file can’t
be restored in the mobile. This SHA - 1 Algorithm can be
applied to all contents of the mobile or any specific content
of the mobile. As we confine to file fabrication and
restoration, we propose to apply the SHA - 1 Algorithm
specifically to the contents of android mobile. Immediately
after selecting the USB debugging option, a unique Hash
Value for every file in the android mobile is generated.
Those Hash values must be stored in permanent memory of
the Android Mobile. As we all know that these Hash values
cannot be changed and these values will be in the
permanent memory until the USB Debugging is disabled.
We propose that the Hash value of the original file should
not go along with the copy of the targeted file, when it is
exported in Xml format [6] to the PC. The fabricated file is
sent through Data transfer Protocols, and it has a new Hash
value which is generated while it is being imported to the
mobile. The Hash value of the fabricated file must be
stored in other than permanent memory of the Android
mobile. Now the new Hash value must be compared to the
Hash values which are in the permanent memory of the
Android mobile. When the Hash value of the fabricated file

is not matched with any one of the Hash values, the mobile
does not accept it. In this process, we may prevent the file
from being fabricated.
 We wish to propose another alternative which is very
simple. According to our proposal (2), the exported file
which is usually sent through Xml format to the PC. The
targeted file is opened and fabricated. To make the targeted
file unchangeable, the (exported) Xml file must be made as
only readable when it is being exported onto the PC.

VI. CONCLUSION

 We compared and analysed three algorithms MD5, SHA-
1 and SHA-512. The SHA-1 has best performance on 32-
bit processor. We also proposed a novel and efficient way
of storing files in Android Mobile devices such that if any
file is taken as evidence in the court of law. SHA-1 is not
patented. It may be used free of charge for any
purpose .With the help of SHA-1 Algorithm we can ensure
the integrity of files.

REFERENCES
[1]. www.asd.gov.au/publications/csocprotect/SHA-1/ Deprecated
[2]. Significance of Hash Value Generation in Digital Forensic: A Case

Study, IJERD, Volume 2, Issue 5 (July 2012), PP. 64-70
[3]. Cryptography and Network Security, Fifth Edition, William Stallings

Prentice Hall 2010,ISBN-10: 0136097049
[4]. http://www.iusmentis.com/technology/hashfunctions/md5
[5]. http://csrc.nist.gov/cryptval/512
[6]. Enhancing the Integrity of Short Message Service, IJCSI, Vol. 10,

Issue 6, No 2, November 2013

Hanumantu Rajeswari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7376-7379

www.ijcsit.com 7379

